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Bounding Bounding ηη⊕⊕ (What is (What is ηηuu?)?)

• At a previous SWG, some discussion of 
how       impacts mission success

• Statement made that if value of      is too 
small, there is no hope of success due 
to finite mission life

– But, what if we know exactly which 
stars to look at? (Precursor 
science)

• There are two separate issues:

1. How many stars must we look at if 
we hope to find ‘Earths’

2. How far must we be able to look to 
see the ‘right’ stars

• We want to address the question of how 
precursor science, as well as 
uncertainty, impacts system design

η⊕

η⊕

• Definitions used:

– Fraction of TOTAL stars that HAVE 
planets of ‘interest’ (POI)

– Fraction of TOTAL stars we THINK 
have planets of interest.  This is the 
upper bound for 

– Probability of finding POI within a 
sample of stars

– Total number of stars in a volume of 
space

– Radius of volume of space

– Total number of stars with POI 
within a volume of space
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Why is Why is ηηuu an important parameter?an important parameter?
• By its definition,      must vary between 

the value of      and 1

• If we assume that we are not going to 
sample stars that are unfavorable, then 
the probability (p) of finding a POI within 
a sample of stars is

• With no a priori knowledge (precursor), 
this probability is simply      , but with 
complete knowledge it could equal 1

• If only 1 in 1000 stars has a POI, but we 
know which one it is, then we only have 
to look at one star

– BUT it still may be very far away

η⊕

ηu

η⊕ ≤ ηu ≤1

p = η⊕

ηu

η⊕

• Although     factors into how many stars 
we need to search, it does not affect how 
far we must look

• Assuming stars are uniformly distributed:

NS /⊕ = η⊕NS = η⊕
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For example, if             = 0.001
and             = 0.01 (good knowledge)

We have a 0.1 probability that the stars we 
look at will have planets, so we don’t 
have to survey as many of them

BUT we have to look 10x farther to find them
• Impact: May still need larger baselines
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Applying Sampling StatisticsApplying Sampling Statistics
• Only F, G and K type stars are assumed 

to be likely to have planets of interest
• Currently our ‘guess’ at     is thenηu

• For large sample size (N), the sampling 
statistics approach a Poisson process

P(k) = λk

k!
e−λ      λ = pN

• The expected value of λ for the distribution 
is the number of trial successes

• Given N samples, and k successes, the 
most likely value of p is k/N

• The uncertainty in λ is smaller with fewer 
successes

ηu = NF−G−K

NAll

ηuη⊕

All Stars in V

We are only considering those stars⇒

• If precursor science ‘surveys’ 100 F-G-K 
stars, and ‘identifies’ 2 POIs, then the 
most likely value of λ for the sample is 2, 
and p=1/50

• But, what if we also learn something 
about why these stars had planets?

Expected Value of λ for a Given Number of 
Successes
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How Can How Can PrecusorsPrecusors Impact Impact ηηuu??

• If Pf is the likelihood of failing to find any 
planets in the next sample set, we can 
calculate

• Given p, we can determine the number 
of additional samples that must be taken

• With the current value of p = 0.02, a 
likelihood of 1% for failing to find any 
planets of interest would mean we have 
to survey >230 stars

• If it is eventually determined that there is 
a reason why only these 1/50 stars has a 
POI, then the value of ηu can be reduced 
by a factor of 1/50, as our future search 
strategies will be more selective

• If precursor observation and theory 
estimates that 1/50 of F-G-K type stars 
has POI, then two things might happen:

1) If a notable correlation can be made, 
then      can be reduced, and p increased

– E.g. ‘All favorable stars are G-type’

2) Otherwise, we don’t know how to be 
more selective in our search, and 
therefore cannot reduce 

– Instead, we know that the p 
associated with our current search 
strategy has an expected value of

0.02 
u

p η
η
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p
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When Does When Does ηηu u Change?Change?

• ηu changes as a result of processed precursor science mission data
• Data processing will lag launch dates by 2-3 years

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

• Current Projects
• Keck (July 2003 – 1st published science 

observation, 2001 – 1st light)
– Exozodiacal dust characterization & 

nulling
– Can detect Uranus size planets around 

stars up to 60 light yrs away 

SIMKepler
-indirect planet 
detection using 
“transition” method

Eclipse

Select Baseline
Architecture

LBTI JWSTSIRTF
TPFSOFIA

• Future Projects before Architecture Selection
– SOFIA 

• Proto-planetary disks, planet 
formation in nearby star systems

– SIRTF
• Brown dwarfs, super-planets
• Dust disks surrounding nearby stars

Most of the Precursor Science Data Arrives AFTER Baseline Architecture Selection
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How Does How Does ηηu u Change? (Case Study)Change? (Case Study)

• ηu changes with significant precursor science/observation 
• Example: Correlation between iron-rich stars and large planets*
• Scenario – 754 nearby sun-like stars surveyed to determine the presence of a Jupiter-

sized planet & spectrum of each star taken to determine amount of iron
• Results - 61 planets existed.  Data suggests metal-rich stars are more likely to develop 

planetary systems
– Near linear relationship between Fe and planet existing

• How this affects ηu for large planets around 
sun-like stars:

– Stars with 1/10 to 1/3 the amount of Fe 
appear to have no detectable planets

– Assuming this data is representative of 
an arbitrarily large data set

– Incorporating the weighted probabilities 
is work in progress

*Fischer, UCBerkeley/Valenti, STScI, http://exoplanets.org/metalicity.html
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Limits of a Fixed Baseline SystemLimits of a Fixed Baseline System
• The time required to do detection about a given 

star is the same regardless of habitable zone 
coverage (one aspect of ‘completeness’)

– Less than 100% coverage allows possibility 
of missing a planet that is there

• Fixed baseline systems will have 100% coverage 
over some stars, but partial coverage over most.

– Stars with 100% coverage occur in a narrow 
distance band

– A larger number of stars can be included in 
this band by looking farther out, but at the 
expense of longer integration times (fewer 
stars actually viewed)

η⊕ = 0.01

η⊕ = 0.01, ηu = 1Pf

Pf η⊕ = 0.001, ηu = .01
η⊕ = 0.001

BL 1 BL 2 BL 3

# of stars in ∆R (C=1) 100 500 1000

# viewable over mission 50 40 30

# of planets if 1 5 10

     if 60% 67% 74%

# of planets if 0 0 1

     if 100% 100% 5%

• Higher uncertainty in which stars should be observed 
favors looking closer, since a larger sample set can be 
viewed over the mission lifetime

– This is the effect of distance on integration time
• However, if       is much smaller than predicted, the 

number of stars accessible by a shorter fixed baseline 
system may be insufficient to have an ‘Earth’

• Longer fixed baseline systems are less likely to find 
Earths if ηu is large, but may be the only chance of 
finding them if precursor missions reduce ηu

η⊕
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Completeness vs. Stellar Distance for Two Different 
Fixed Baselines

Because precursor science data will lag the architecture downselect
there is no way to know whether a shorter or longer fixed baseline is better
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Merits of a Variable BaselineMerits of a Variable Baseline
• Unlike a fixed baseline system, a variable 

baseline allows for observational 
completeness regardless of the stellar 
distance

• If ηu turns out to be relatively large, 
operating at shorter baselines will allow for 
many more observations to be made over 
the mission lifetime, increasing science 
throughput

• If ηu turns out to be relatively small, 
operating at longer baselines grants 
access to a much larger volume of stars, 
increasing science throughput
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Completeness vs. Stellar Distance for Fixed and 
Variable Baselines

• If ηu turns out to be very small, then very large baselines may be necessary to access a 
sufficient volume of space to insure the stars with planets of interest can be observed

• The longer integration times make the need for a tunable baseline (to achieve full 
completeness) even more important

Independent of technological issues, for or against, a formation flown variable baseline 
system appears to offer the lowest risk for science return
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SummarySummary

• Even if ηu is very small, precursor science will allow us to upper bound its value 
in such a way that we can be smarter about which stars are observed

• A large uncertainty in ηu drives us toward a desire for more observations, and 
therefore shorter baselines
– The danger lies in the possibility that the limited number of stars accessible 

by a shorter fixed baseline system may no have any ‘Earths’

• Larger fixed baseline systems allow for more stars to be accessed, but without 
good precursor knowledge, we cannot effectively limit our search

• The problem is that the architecture downselect occurs before it will be known 
whether searching closer or farther is the better approach

• The most robust solution is to make the baseline variable, over a relatively large 
extent, allowing operation in either mode
– This supports a formation flown system as providing the least science risk
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